Understanding Blue Carbon and Ocean Acidification

> Dr. Christopher Sabine, Oceanography Professor, University of Hawai'i at Mānoa

Global fossil CO_2 emissions have risen steadily over the last decades. Emissions in 2021 are set to rebound towards their pre-COVID-19 levels after an unprecedented drop in 2020.

Fate of anthropogenic CO₂ emissions (2011–2020)

Sources

Fossil Fuels and Industry

90% 9.6 PgC/yr

10% 1.1 PgC/yr

Fate of anthropogenic CO₂ emissions (2011–2020)

Sources

Fossil Fuels and Industry

Sinks

47% 5 PgC/yr

Fate of anthropogenic CO₂ emissions (2011–2020)

190 billion metric tons of human-derived carbon is stored in the ocean

Carbon Trading was a key component of the 1997 Kyoto Protocol

Recognizing that the ocean is such a large sink for CO_2 , governments in the early 2000s were asking how to get carbon credits for the ocean uptake.

Global Emission Markets

Blue carbon is the carbon stored in coastal and marine ecosystems. The Blue Carbon Initiative currently focuses on carbon in coastal ecosystems mangroves, tidal marshes and seagrasses.

Blue Carbon was developed for the carbon trading market

Carbon Trading is not strictly a part of the Paris agreement, so governments today seem to be less interested in Blue Carbon, but there are a number of other entities that are still promoting Blue Carbon as a smart way to sequester carbon while also helping with local environmental issues.

3 Basic Approaches to Ocean Carbon Capture and Storage

December 2021 National Academies Report

1) Direct injection of CO₂ in the ocean Largely dismissed because it would exacerbate ocean acidification

2) Enhanced Biological Uptake

Blue carbon, seaweed cultivation, artificial upwelling, ecosystem recovery, nutrient fertilization

 $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$

3) Alkalinity Enhancement

Carbonate weathering, silicate weathering, electrochemical

 $CaCO_3 + H_2O + CO_2 = Ca^{+2} + 2HCO_3^{-1}$

 $Mg_2SiO_4 + 4CO_2 + 4H_2O = 2Mg^{+2} + 4HCO_3^{-} + H_4SIO_4$

Ocean Acidification: the other CO₂ problem

Sarah R. Cooley (scooley@whoi.edu)

Ocean acidification

Carbon

Dioxide

 (CO_2)

Climate change

CO₂ is an acid gas... it reacts with water to form carbonic acid.

10000

Concern for Marine Organisms and Ecosystems

- Reduced calcification rates
- Increased photosynthesis and nitrogen fixation
- Reduced growth, production and life span of adults, juveniles & larvae
- Reduced tolerance to other
 environmental fluctuations
- Significant shift in key nutrient and trace element speciation

Changes to:

- Fitness and survival
- Species biogeography
- Key biogeochemical cycles
- Food webs

Reduced:

- Sound Absorption
- Homing Ability
- Recruitment and
 - Settlement

Surface Water Aragonite Saturation States with 280 ppm CO₂

Surface Water Aragonite Saturation States with 650 ppm CO₂

